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In this paper, an attempt has been made to obtain closed form transient solution for the double ended 

queuing system n discrete time. It is also further shown how the corresponding results in continuous 

time can be obtained.  
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1.  Introduction 

 The concept of double ended queue was introduced by Kendall (1951). The example of such a 

queuing system is a taxi-stand where at times passengers queue up for taxis and at other times taxis 

wait for passengers. Shrivastava and Kashyap (1982) obtained the transient solution of a double 

ended, queue in terms of summation of the integrals of Bessel functions, which is quite cumbersome 

and difficult to compute. Sharma (1990) provided a simple algebraic closed from expression and easy 

to compute for the transient probabilities in continuous time. In this paper, an attempt has been made 

to obtain closed form transient solution for the double ended queuing system in discrete time. It is also 

further shown how the corresponding results in continuous time can be obtained.  

2. Assumptions 

(1) The numbers on the negative axis stand for taxis waiting for customers or passengers where as 

the numbers on the positive axis denote the passengers waiting for taxis. 

(2) The queue consists of finite waiting space. 

(3) Probabilities of passengers arrival is  and probabilities of taxis arrival is . 

(4) Arrival probabilities of passengers and taxis follows geometric distributions. 

(5) The queue discipline is FCFS. 

3. Notations 

 Xk : Number of customers or taxis at epoch k. 

 M, N : Maximum number of taxis and customers respectively 

 

  Scholarly Research Journal's is licensed Based on a work at www.srjis.com 

 

Abstract 
 

http://www.srjis.com/srjis_new/www.srjis.com
http://www.srjis.com/srjis_new/www.srjis.com


SRJIS/BIMONTHLY/ BHUSHAN KUMAR (2379-2386) 

MAY-JUNE 2016, VOL-3/24                        www.srjis.com                                            Page 2380 
 

  : Arrival probabilities of customers and taxis respectively 

  :   (l – ) 

  :  (1 – ) 

4. Analysis Of The Model 

 Let Xm be either the number of customers or taxis at discrete time epoch m then {Xk}, k > 0 is 

an integer valued discrete stochastic process. 

 Taking values –M, –M+1, .... 0, 1, 2, ..... N – 1, N; Xk = k (–M<k<N) implies that there are 

either M taxis or N customers waiting at epoch k. On each arrival or service the process Xk behaves as 

a discrete time Markov – Process and represents the state of the system. 

 Let Pm(n) denote the probability that the system is in the n
th
 state at the beginning of the m

th
 

epoch. 

 The difference – differential equations may be written as 

Pm+1(–M) = Pm (–M) (1–) + Pm(–(M–1))(1–)              

....(1) 

Pm+1[–(M–1)] = Pm[–(M–1)] [(1–) (1–) + ] + Pm[–(M–2) (1–)] + Pm (–M)         ....(2) 

Pm+1(k)  = Pm(k) [(1–) (1–) + ] + Pm(k+1) (1–)]+ Pm (k–1) (1–); –(M–2) < k < N – 2

  

                            

....(3) 

Pm+1(N – 1) = Pm(N–1) [(1– ) (1 – ) + ] + Pm(N)+ Pm (N – 2)(1– )]                         

....(4) 

Pm+1 (N)  = Pm (N) (1 – ) + Pm (N –1) (1 – )            ….(5) 

With Po (–M) = 1, Po (i) = 0; –(M – 1) < i < N 

 Let Pz (n) be the probability generating function (p.g.f.) of Pm (n) defined as 

  PZ (n) = 


0m
z

m
 Pm(n) ; | z | < 1 

 Now taking the p.g.f. of difference-differential equations we have 

  s Pz (–M) –m (1–l) Pz(–(M–1))   = 
z

1
           ....(6) 

 –Pz (–M) + (s++) Pz [– (M – 1)] – Pz [– (M – 2)]  = 0           ....(7) 

  – Pz (k–1) + (s++) Pz (k) – Pz (k+1)  = 0                                 

....(8) 

  – Pz (N–2) + (s++) Pz (N–1) – Pz (N)  = 0                                 

....(9) 

    – Pz (N–1) + (s+) Pz (N)  = 0        

….(10) 
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   AP  = (o(–M), o(–M+1).... oo,  o1, ... oN)         

….(11) 

 Where A is a real tri-diagonal matrix of order (N–k+2) × (N–k+2) ; P is a column vector and 

ok the Kroneeker delta defined as 

    
z

1
;  k = – M 

     0 ; Otherwise 
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(M + N + 1) × (M + N + 1) 

 

 

  Pz (–M) 

  Pz (–M + 1) 

  Pz (–M + 2) 

  . 

  . 

  . 

  Pz (–1) 

And P = Pz (0) 

  Pz (1) 

  . 

  . 

  . 

  . 

  . 

  Pz (N–2) 

  Pz (N–1) 

  Pz (N) 

Using Cramer's rule 

  Pz (N) = 
(s)A 

(s)A
1MN 

; |z| <1 

 Where AN+M+1 (s) is obtained from matrix A by replacing the (N+M+1)
th
 column by right hand 

side of (11) and |A(s)| is the determinant of A (s). 

 

 

(N+M+1) × 1 
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  –M+1 –M+2 ... –1 0 1 ... N–2 N–1 N 

 – M+1 s++ 
– λ  

... 0 0 0 ... 0 0 0 

 – M+2 
– λψ  

s++ ... 0 0 0 ... 0 0 0 

 . . . ... . . . ... . . . 

 . . . ... . . . ... . . . 

D(s) = . . . ... . . . ... . . . 

 –1 0 0 ... s++ 
– ψ  

0 ... 0 0 0 

 0 0 0 ... 
– ψ  

s++ 
– ψ  

... – 0 0 

 1 0 0 ... 0 
– ψ  

s++ ... s++ 0 0 

 . . . ... . . . ... . . . 

 . . . ... . . . ... . . . 

 . . . ... . . . ... . . . 

 N – 2 0 0 ... 0 0 0 ... s++ 
– ψ  

0 

 N – 1 0 0 ... 0 0 0 ... 
– ψ  

s++ 
– ψ  

 N 0 0 ... 0 0 0 ... 0 
– ψ  

s++ 

(N+ M) × (N + M 

if we expand |D (s)| it will be a polynomial of degree (N+M). One may note that the roots of |D(s)| are the negatives of the eigen values of matrix 

D(0). 
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 Observe that D(0) is a positive definite symmetric tri-diagonal matrix therefore its eigen 

values are real, positive and distinct, Kijima (1992). Hence the roots of the polynomial |A(s)| are real, 

negative and distinct (one root being zero). 

 Let i (i =0, 1, 2, ..., N+M+1) be the roots of  |A(s)| with (=–M= 0) then. 

   |A(s)| = s 
1MN

1i




  (s – i) 

 and Hence Pz (N) = 
1MN

1i

1MN
(s)A









                 ....(12) 

    –M = o 

    –M+1 = 1 

    –M+2 = 2 

    . 

    . 

    . 

     N–1 = N+M 

     N = N+M 

     N = N+M+l 

 Resolving eq
n
 (12) into partial fractions and replacing s by 









z

z–1
and using initial condition 

and comparing coefficient of z
m
, we have. 

Pm(N) = (–1)
N+M

 () ()
N+M–1


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


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







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


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
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

m

jjiii a )1()–()()(–

1–
1MN

i 1,j

1–
1MN

li

1–
1MN

li
  

....(13) 

 However, if one is interested in finding the value of Pm(N) under arbitrary initial condition, 

one may obtain the probability Pm(N) as 

  Pm(N) = 
m

jja )1()(
)(–

1MN

1j

NM

0j

MN

lj



















  ....(14) 

where 

      aj   = 

)–(Πa

)(aD

ij

1MN

J1,i
j

ji






 

  and Pm(N) = 1MN  i  if     )1(
)(–

m

j

1MN

lj
lj

MN

0j











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
j   ....(15) 

s      (s – i) 
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 Where Di(s) being the determinant obtained by the top left (i×i) square matrix formed from 

A(s) such that |A(s)| = DN+M+2 (s). N= N+M+1 = 0, Di (s) is obtained by the following recursive 

relation which can be easily obtained because of tridiagonal matrix of |A(s)|. 

 Assume Do (s) = 1, D1 (s) = s + , b–m = 0 and N= 0 

     Di (s) = (s++)Di–l(s) – i–2 i–l Di–2 (s) ; z < i < N+M 

 It may be noted that we find the eigen values of the matrix D(0) and roots are negatives of the 

eigen values. The accuracy of the roots has been verified against the request in algebra viz. sum of the 

negatives of the roots is equal to the sum of the elements on the principal diagonal of A(0). The 

routines of the package are quite efficient and produce result to a high degree of accuracy even when 

the matrix size is greater than so. 

 Since (1+i) m  0 as m   the steady state distribution is given by 

  Pm(N) = 
)(– lj

MN

0j










             ....(16) 

5.  Continuous Case 

Letting  = () + 0 () ;  =  () + 0 () 

 Taking m = t and m+1 = t + , in the difference differential equations one can transform the 

difference-differential equation in m to differential equation in t. We can then proceed to get the 

continuous time solutions of the transformed equations. 

 Alternatively, one can change the root equation and then get the continuous time solution 

form the final discrete time solutions. Proceeding this way the roots i of |A(s)| are transformed to 

i. It is than easy to see that (1+i)
m
 tends to e


i
+1

 in continuous time, where t is divided into m 

such interval each of length  such that t = m. 

 Now treating  and  as the arrival rate of passenger and arrival rate of taxi respectively. 

One can get the transient solution of the continuous time model. Note that the root of |A(s)| were 

formed in s = 








z

z–1
Parameter s in continuous case may then be treated as the transform parameter. 

Now the R.H.S. of matrix equation will have l (one) in the i
th
 place instead of 









z

1
.  

 The analogy gives the fact that discrete time model discussed in this paper are more general 

and correspondingly provide results in continuous time with a real case. 

 Pm(N) = (–1)
N+M
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N+M–1
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  ....(17) 
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6.  Conclusion 

A closed form transient solution for the double ended queuing system in discrete time has been 

obtained.  It is also further shown that the corresponding results in continuous time can be obtained.  
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